36% ZĽAVA PRIVESKY PANDORA,PRIVESKY PANDORA,privesky pandora pandora ar líne

Pandora Sleva

Nákupní košík:0

pandora ar líne

pandora sølv charms
pandora saor in aisce
Пандоры в продаже
where to buy pandora rings
  • «
  • 15
  • 16
  • 17
  • 18
  • 19
  • »
  1. Au@ZnO nanostructures on porous silicon for photocatalysis and gas-sensing: the effect of plasmonic hot-electrons driven by visible-light

    NASA Astrophysics Data System (ADS)

    Zhou, Fang; Wang, Qiang; Liu, Wenjun

    2016-08-01

    Nanostructured heterojunctions play key role for transfer and separation of interfacial photo-carriers. At visible light illumination, the effects of Au nanoparticles (NPs) for the photocatalysis and gas-sensing performance of Au@ZnO nanstructures on porous silicon layer are reported. At optimized loading amount of Au NPs, the local surface plasmon resonance (LSPR) effect of Au NPs is studied. Generated by visible light irradiation, the LSPR effect of Au NPs promotes desorption and activation of surface adsorption oxygen species -{{{{O}}}2}-, which is initiated by hot electrons transfer through Au-ZnO nanojunctions. This mechanism is responsible for the enhanced photocatalysis of methyl orange molecular, as well as enhancing the detecting performance for ammonia (NH3) gas at room temperature.

  2. Preparation of reduced graphene oxide/meso-TiO2/AuNPs ternary composites and their visible-light-induced photocatalytic degradation n of methylene blue

    NASA Astrophysics Data System (ADS)

    Yang, Yongfang; Ma, Zheng; Xu, Lidong; Wang, Hefang; Fu, Nian

    2016-04-01

    Reduced graphene oxide/meso-TiO2/AuNPs (RGO/meso-TiO2/AuNPs) ternary composites were prepared via the addition of graphene oxide to the dispersion of meso-TiO2/AuNPs under hydrothermal conditions. The structure and the morphology of the RGO/meso-TiO2/AuNPs materials were characterized using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). The photocatalytic activity of RGO/meso-TiO2/AuNPs was evaluated by degradation of methyl blue (MB) under visible-light illumination. The ternary composites present an extended light absorption range, efficient charge separation properties, high adsorption ability for MB and high photocatalytic degradation activity of MB compared to the meso-TiO2 and meso-TiO2/AuNPs.

  3. Fabrication of Separator Demonstration Facility process vessel

    SciTech Connect

    Oberst, E.F.

    1985-01-15

    The process vessel system is the central element in the Separator Development Facility (SDF). It houses the two major process components, i.e., the laser-beam folding optics and the separators pods. This major subsystem is the critical-path procurement for the SDF project. Details of the vaious parts of the process vessel are given.

  4. Au and Ti induced charge redistributions on monolayer WS2

    NASA Astrophysics Data System (ADS)

    Zhu, Hui-Li; Yang, Wei-Huang; Wu, Ya-Ping; Lin, Wei; Kang, Jun-Yong; Zhou, Chang-Jie

    2015-07-01

    By using the first-principles calculations, structural and electronic properties of Au and Ti adsorbed WS2 monolayers are studied systematically. For Au-adsorbed WS2, metallic interface states are induced in the middle of the band gap across the Fermi level. These interface states origin mainly from the Au-6s states. As to the Ti adsorbed WS2, some delocalized interface states appear and follow the bottom of conduction band. The Fermi level arises into the conduction band and leads to the n-type conducting behavior. The n-type interface states are found mainly come from the Ti-3d and W-5d states due to the strong Ti-S hybridization. The related partial charge densities between Ti and S atoms are much higher and increased by an order of magnitude as compared with that of Au-adsorbed WS2. Therefore, the electron transport across the Ti-adsorbed WS2 system is mainly by the resonant transport, which would further enhances the electronic transparency when monolayer WS2 contacts with metal Ti. These investigations are of significant importance in understanding the electronic properties of metal atom adsorption on monolayer WS2 and offer valuable references for the design and fabrication of 2D nanodevices. Project supported by the National Natural Science Foundation of China (Grant Nos. 91321102, 11304257, and 61227009), the Natural Science Foundation of Fujian Province, China (Grant Nos. 2011J05006, 2009J05149, and 2014J01026), the Foundation from Department of Education of Fujian Province, China (Grant No. JA09146), Huang Hui Zhen Foundation of Jimei University, China (Grant No. ZC2010014), and the Scientific Research Foundation of Jimei University, China (Grant Nos. ZQ2011008 and ZQ2009004).

  5. Crystal structures and new perspectives on Y3Au4 and Y14Au51.

    PubMed

    Celania, Chris; Smetana, Volodymyr; Mudring, Anja Verena

    2017-09-01

    Y3Au4 (triyttrium tetragold) and Y14Au51 (tetradecayttrium henpentacontagold), two binary representatives of Au-rich rare earth (R) systems crystallize with the space groups R-3 and P6/m, adopting the Pu3Pd4 and Gd14Ag51 structure types, respectively (Pearson symbols hR42 and hP65). A variety of binary R-Au compounds have been reported, although only a few have been investigated thoroughly. Many reports lack information or misinterpret known compounds reported elsewhere. The Pu3Pd4 type is fairly common for group 10 elements Ni, Pd, and Pt, while Au representatives are restricted to just five examples, i.e. Ca3Au4, Pr3Au4, Nd3Au4, Gd3Au4, and Th3Au4. Sm6Au7 is suspected to be Sm3Au4 due to identical symmetry and close unit-cell parameters. The Pu3Pd4 structure type allows for full substitution of the position of the rare earth atom by more electronegative and smaller elements, i.e. Ti and Zr. The Gd14Ag51 type instead is more common for the group 11 metals, while rare representatives of group 12 are known. Y3Au4 can be represented as a tunnel structure with encapsulated cations and anionic chains. Though tunnels are present in Y14Au51, this structure is more complex and is best described in terms of polyhedral `pinwheels' around the tunnel forming polyhedra along the c axis.

  6. Impact of Ni/Ge/Au/Ti/Au and Ti/Pt/Au collector metal on GaInP/GaAs HBT characteristics

    NASA Astrophysics Data System (ADS)

    Park, Jae-Woo; Mohammadi, Saeed; Pavlidis, Dimitris

    2000-10-01

    The collector-emitter offset voltage of GaInP/GaAs HBTs grown by chemical-beam epitaxy with reduced toxicity precursors is investigated for Ni/Ge/Au/Ti/Au and Ti/Pt/Au collector contact metals. The offset voltage for HBTs with Ti/Pt/Au collector metal is increased by 0.26 V compared to Ni/Ge/Au/Ti/Au due to the 0.26 eV barrier existing between the n-GaAs subcollector and the Ti/Pt/Au contact metal. Other parameters affected by the collector contact barrier and impacting transistor performance include DC gain, microwave and power performance.

  7. Au nanorods-incorporated plasmonic-enhanced inverted organic solar cells

    NASA Astrophysics Data System (ADS)

    Peng, Ling; Mei, Yang; Chen, Shu-Fen; Zhang, Yu-Pei; Hao, Jing-Yu; Deng, Ling-Ling; Huang, Wei

    2015-11-01

    The effect of Au nanorods (NRs) on optical-to-electric conversion efficiency is investigated in inverted polymer solar cells, in which Au NRs are sandwiched between two layers of ZnO. Accompanied by the optimization of thickness of ZnO covered on Au NRs, a high-power conversion efficiency of 3.60% and an enhanced short-circuit current density (JSC) of 10.87 mA/cm2 are achieved in the poly(3-hexylthiophene): [6,6]-phenyl-C61-butyric acid methyl ester (P3HT:PC60BM)-based inverted cell and the power conversion efficiency (PCE) is enhanced by 19.6% compared with the control device. The detailed analyses of the light absorption characteristics, the simulated scattering induced by Au NRs, and the electromagnetic field around Au NRs show that the absorption improvement in the photoactive layer due to the light scattering from the longitudinal axis and the near-field increase around Au NRs induced by localized surface plasmon resonance plays a key role in enhancing the performances. Project supported by the Ministry of Science and Technology, China (Grant No. 2012CB933301), the National Natural Science Foundation of China (Grant Nos. 61274065, 51173081, 61136003, BZ2010043, 51372119, and 51172110), and the Priority Academic Program Development of Jiangsu Provincial Higher Education Institutions and Synergetic Innovation Center for Organic Electronics and Information Displays, China.

  8. Heterostructured CIGS-Au nanoparticles: from Au-CIGS side-by-side structure to Au-core/CIGS-shell configuration.

    PubMed

    Xu, Yeming; Li, Quan

    2011-08-01

    Heterostructured Au-Copper Indium Gallium Selenide (CIGS) nanoparticles (nps) with Au-CIGS side-by-side and Au-core/CIGS-shell configurations have been synthesized in a controllable manner using seed mediated growth. Detailed microstructure analysis reveals that (112) planes in the tetragonal chalcopyrite CIGS serve as the predominant termination surfaces during single phase CIGS nanoparticle growth. Preferential nucleation of Au on such planes determines the Au-CIGS side-by-side configuration when the pre-synthesized CIGS nps are used as the seeds for further Au growth. Reversing the growth sequence by employing Au nano-seeds results in Au-core/CIGS-shell configuration, as determined by the non-preferential nucleation of CIGS on the spherical Au nanoparticle surface. The different morphological configurations of the heterostructures are found to modify the surface plasmon resonance of Au in the corresponding samples. This journal is © The Royal Society of Chemistry 2011

  9. Spacecraft -- Capsule Separation (Animation)

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Click on the image for Spacecraft -- Capsule Separation animation

    This animation shows the return capsule separating from the Stardust spacecraft.

  10. Hydrogen Photo-production from Ethanol and Water over Au/TiO2 Rutile Single Crystal

    DTIC Science & Technology

    2014-03-26

    Approved for Public Release; Distribution Unlimited Hydrogen Photo-production from Ethanol and Water over Au/ TiO2 Rutile Single Crystal The views...production from Ethanol and Water over Au/ TiO2 Rutile Single Crystal Report Title This project in its final form has focused on hydrogen production from...Hydrogen Production from Ethanol over Au/ TiO2 Nanoparticles”, Nature Chemistry, 3 (6) 489-492 ( 2011.) [2] I.R.Macdonald, R.F.Howe, X.Yang, W.Zhou, “In

  11. K2 Au(IO3)5 and β-KAu(IO3)4: Polar Materials with Strong SHG Responses Originating from Synergistic Effect of AuO4 and IO3 Units.

    PubMed

    Xu, Xiang; Hu, Chun-Li; Li, Bing-Xuan; Mao, Jiang-Gao

    2016-01-26

    Two new polar potassium gold iodates, namely, K2 Au(IO3)5 (Cmc21) and β-KAu(IO3)4 (C2), have been synthesized and structurally characterized. Both compounds feature zero-dimensional polar [Au(IO3)4](-) units composed of an AuO4 square-planar unit coordinated by four IO3(-) ions in a monodentate fashion. In β-KAu(IO3)4, isolated [Au(IO3)4](-) ions are separated by K(+) ions, whereas in K2 Au(IO3)5, isolated [Au(IO3)4](-) ions and non-coordinated IO3(-) units are separated by K(+) ions. Both compounds are thermally stable up to 400 °C and exhibit high transmittance in the NIR region (λ=800-2500 nm) with measured optical band gaps of 2.65 eV for K2 Au(IO3 )5 and 2.75 eV for β-KAu(IO3)4. Powder second-harmonic generation measurements by using λ=2.05 μm laser radiation indicate that K2 Au(IO3)5 and β-KAu(IO3)4 are both phase-matchable materials with strong SHG responses of approximately 1.0 and 1.3 times that of KTiOPO4, respectively. Theoretical calculations based on DFT methods confirm that such strong SHG responses originate from a synergistic effect of the AuO4 and IO3 units. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. R3Au9Pn (R = Y, Gd–Tm; Pn = Sb, Bi): A link between Cu10Sn3 and Gd14Ag51

    DOE PAGES

    Celania, Chris; Smetana, Volodymyr; Provino, Alessia; ...

    2017-06-05

    A new series of intermetallic compounds R3Au9Pn (R = Y, Gd–Tm; Pn = Sb, Bi) has been discovered during the explorations of the Au-rich parts of rare-earth-containing ternary systems with p-block elements. The existence of the series is strongly restricted by both geometric and electronic factors. R3Au9Pn compounds crystallize in the hexagonal crystal system with space group P63/m (a = 8.08–8.24 Å, c = 8.98–9.08 Å). All compounds feature Au-Pn, formally anionic, networks built up by layers of alternating edge-sharing Au@Au6 and Sb@Au6 trigonal antiprisms of overall composition Au6/2Pn connected through additional Au atoms and separated by a triangular cationicmore » substructure formed by R atoms. From a first look, the series appears to be isostructural with recently reported R3Au7Sn3 (a ternary ordered derivative of the Cu10Sn3-structure type), but no example of R3Au9M is known when M is a triel or tetrel element. R3Au9Pn also contains Au@Au6Au2R3 fully capped trigonal prisms, which are found to be isostructural with those found in the well-researched R14Au51 series. This structural motif, not present in R3Au7Sn3, represents a previously unrecognized link between Cu10Sn3 and Gd14Ag51 parent structure types. Magnetic property measurements carried out for Ho3Au9Sb reveal a complex magnetic structure characterized by antiferromagnetic interactions at low temperature (TN = 10 K). Two metamagnetic transitions occur at high field with a change from antiferromagnetic toward ferromagnetic ordering. Density functional theory based computations were performed to understand the materials’ properties and to shed some light on the stability ranges. As a result, this allowed a better understanding of the bonding pattern, especially of the Au-containing substructure, and elucidation of the role of the third element in the stability of the structure type.« less

  13. R3Au9Pn (R = Y, Gd-Tm; Pn = Sb, Bi): A Link between Cu10Sn3 and Gd14Ag51.

    PubMed

    Celania, Chris; Smetana, Volodymyr; Provino, Alessia; Pecharsky, Vitalij; Manfrinetti, Pietro; Mudring, Anja-Verena

    2017-06-19

    A new series of intermetallic compounds R3Au9Pn (R = Y, Gd-Tm; Pn = Sb, Bi) has been discovered during the explorations of the Au-rich parts of rare-earth-containing ternary systems with p-block elements. The existence of the series is strongly restricted by both geometric and electronic factors. R3Au9Pn compounds crystallize in the hexagonal crystal system with space group P63/m (a = 8.08-8.24 Å, c = 8.98-9.08 Å). All compounds feature Au-Pn, formally anionic, networks built up by layers of alternating edge-sharing Au@Au6 and Sb@Au6 trigonal antiprisms of overall composition Au6/2Pn connected through additional Au atoms and separated by a triangular cationic substructure formed by R atoms. From a first look, the series appears to be isostructural with recently reported R3Au7Sn3 (a ternary ordered derivative of the Cu10Sn3-structure type), but no example of R3Au9M is known when M is a triel or tetrel element. R3Au9Pn also contains Au@Au6Au2R3 fully capped trigonal prisms, which are found to be isostructural with those found in the well-researched R14Au51 series. This structural motif, not present in R3Au7Sn3, represents a previously unrecognized link between Cu10Sn3 and Gd14Ag51 parent structure types. Magnetic property measurements carried out for Ho3Au9Sb reveal a complex magnetic structure characterized by antiferromagnetic interactions at low temperature (TN = 10 K). Two metamagnetic transitions occur at high field with a change from antiferromagnetic toward ferromagnetic ordering. Density functional theory based computations were performed to understand the materials' properties and to shed some light on the stability ranges. This allowed a better understanding of the bonding pattern, especially of the Au-containing substructure, and elucidation of the role of the third element in the stability of the structure type.

  14. Growth of copper phthalocyanine rods on Au plasmon electrodes through micelle disruption methods.

    PubMed

    Chen, Wei-Hung; Ko, Wen-Yin; Chen, Ying-Shiou; Cheng, Ching-Yuan; Chan, Chi-Ming; Lin, Kuan-Jiuh

    2010-02-16

    To improve the efficiency of the photocurrent conversion process, we have utilized copper phthalocyanine (CuPc) rods, which are capable of enhancing the interfacial area of electron transport and plasmonic gold nanoparticles (Au NPs), which can increase the separation and photogeneration of excitons, to produce a more effective system. In-plane horizontal CuPc rods, with diameters ranging from 0.2 to 1.5 microm, were electrodeposited onto the surface of plasmonic (Au NP) monolayers predeposited onto ITO substrates through electrolytic micelle disruption (EMD) methods.

  15. Cu(2+)-assisted synthesis of hexoctahedral Au-Pd alloy nanocrystals with high-index facets.

    PubMed

    Zhang, Lei; Zhang, Jiawei; Kuang, Qin; Xie, Shuifen; Jiang, Zhiyuan; Xie, Zhaoxiong; Zheng, Lansun

    2011-11-02

    Controlled syntheses of multicomponent metal nanocrystals (NCs) and high-index surfaces have attracted increasing attention due to the specific physical and chemical properties of such NCs. Taking advantage of copper underpotential deposition as a bridge, hexoctahedral Au-Pd alloy NCs with {hkl} facets exposed were successfully synthesized, while phase separation occurred in the absence of Cu(2+) ions. The as-prepared hexoctahedral Au-Pd alloy NCs exhibited very excellent performance in terms of both formic acid electro-oxidation and methanol tolerance due to synergism between the high-index facets and the alloy.

  16. Hydrocyclone separation system

    SciTech Connect

    Worrell, J.R.; Wakley, W.D.; Young, G.A.

    1990-05-22

    This patent describes a hydrocyclone separation system for separating a fluid mixture into at least two components having differing densities. It comprises: a first hydrocyclone separator and a second hydrocyclone separator contained within an elongated protective conduit and each being substantially parallel to a longitudinal axis of the conduit, each hydrocyclone separator having a tangential fluid inlet, an overflow fluid outlet and an underflow fluid outlet; and the first hydrocyclone separator and the second hydrocyclone separator being oppositely disposed with respect to each other with the underflow fluid outlet of the first hydrocyclone separator being spaced immediately adjacent to the tangential fluid inlet of the second hydrocyclone separator and the overflow fluid outlet of the first hydrocyclone separator being spaced immediately adjacent the underflow fluid outlet of the second hydrocyclone separator.

  17. Self-assembly of thiolated cyanine aggregates on Au(111) and Au nanoparticle surfaces

    NASA Astrophysics Data System (ADS)

    Menéndez, Guillermo O.; Cortés, Emiliano; Grumelli, Doris; Méndez de Leo, Lucila P.; Williams, Federico J.; Tognalli, Nicolás G.; Fainstein, Alejandro; Vela, María Elena; Jares-Erijman, Elizabeth A.; Salvarezza, Roberto C.

    2012-01-01

    Heptamethinecyanine J-aggregates display sharp, intense fluorescence emission making them attractive candidates for developing a variety of chem-bio-sensing applications. They have been immobilized on planar thiol-covered Au surfaces and thiol-capped Au nanoparticles by weak molecular interactions. In this work the self-assembly of novel thiolated cyanine (CNN) on Au(111) and citrate-capped AuNPs from solutions containing monomers and J-aggregates has been studied by using STM, XPS, PM-IRRAS, electrochemical techniques and Raman spectroscopy. Data show that CNN species adsorb on the Au surfaces by forming thiolate-Au bonds. We found that the J-aggregates are preferentially adsorbed on the Au(111) surface directly from the solution while adsorbed CNN monomers cannot organize into aggregates on the substrate surface. These results indicate that the CNN-Au interaction is not able to disorganize the large J-aggregates stabilized by π-π stacking to optimize the S-Au binding site but it is strong enough to hinder the π-π stacking when CNNs are chemisorbed as monomers. The optical properties of the J-aggregates remain active after adsorption. The possibility of covalently bonding CNN J-aggregates to Au planar surfaces and Au nanoparticles controlling the J-aggregate/Au distance opens a new path regarding their improved stability and the wide range of biological applications of both CNN and AuNP biocompatible systems.Heptamethinecyanine J-aggregates display sharp, intense fluorescence emission making them attractive candidates for developing a variety of chem-bio-sensing applications. They have been immobilized on planar thiol-covered Au surfaces and thiol-capped Au nanoparticles by weak molecular interactions. In this work the self-assembly of novel thiolated cyanine (CNN) on Au(111) and citrate-capped AuNPs from solutions containing monomers and J-aggregates has been studied by using STM, XPS, PM-IRRAS, electrochemical techniques and Raman spectroscopy. Data show

  18. Photoionization of Au+, Au2+, and Au3+ ions and developments in the synthesis of the metallofullerene Au@C60

    NASA Astrophysics Data System (ADS)

    Kilcoyne, A. L. David; Muller, Alfred; Schippers, Stefan; Hellhund, Jonas; Borovik, Alexander; Mueller, Allison; Gross, Dylan; Johnson, Andrea; Macaluso, David; A. L. D. Kilcoyne Collaboration

    2015-05-01

    Absolute single photoionization of Au+, Au2+, and Au3+ ions was investigated via the merged-beams technique at AMO Beamline 10.0.1.2 of the Advanced Light Source at Lawrence Berkeley National Laboratory. The absolute single photoionization yield was measured as a function of photon energy for each species from the metastable state ionization threshold region to well above the ground state ionization potential. Additional high-resolution measurements were performed for Au+ and Au2+ ions in the region of the ground and metastable state ionization thresholds to better resolve the detailed resonant structure found therein. This structure was used, along with the reported excited state energy levels of Au+, to preliminarily identify previously unreported excitation levels in all three ions. In addition and as a component of the same program, photoionization studies of the endohedral metallofullerene Au@C60+were performed using endohedral fullerene samples synthesized on-site at Beamline 10.0.1.2 of the ALS.

  19. Combat Identification (15au): Project Summary and Closeout Report

    DTIC Science & Technology

    2009-07-01

    méthodologie informatique pour étudier les effets de l’environnement (types d’indices visuels, par exemple) et du système (blue force tracking, le suivi des...résultats principaux du projet a été une méthodologie informatique pour l’évaluation de l’IDCbt. Les résultats de l’évaluation expérimentale ont...méthodologie informatique pour étudier les effets de l’environnement (types d’indices visuels, par exemple) et du système (blue force tracking, par

  20. Materials Data on Au (SG:225) by Materials Project

    SciTech Connect

    Kristin Persson

    2016-04-23

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  • «
  • 15
  • 16
  • 17
  • 18
  • 19
  • »


Top


Il più grande parco divertimenti al coperto d'Italia
Tantissime attrazioni per tutta la famiglia e giostre per ragazzi
Divertimento tra lo zucchero filato e la frutta caramellata

Il più grande parco divertimenti al coperto d’Italia

16-17 dicembre 2017
Dal 22 dicembre 2017 al 7 gennaio 2018
13-14 gennaio 2018

Winterello

Presto online!

Braccialetto

Clicca qui!!

Intrattenimento

Clicca qui!

Attrazioni

Clicca qui

Partner

Supporter